УДК 517.51

О РАВНОМЕРНОЙ ОГРАНИЧЕННОСТИ В $L_{2\pi}^{p(x)}$ НЕКОТОРЫХ СЕМЕЙСТВ ИНТЕГРАЛЬНЫХ ОПЕРАТОРОВ СВЕРТКИ

Т. Н. Шах-Эмиров

Отдел математики и информатики ДНЦ РАН

Исследуется вопрос о равномерной ограниченности семейств многомерных интегральных операторов свертки в пространствах Лебега с переменным показателем.

Multidimentional integral convolution operators' families' uniform boundedness in Lebesgue spaces with variable exponent is investigated in this paper.

Ключевые слова: пространство Лебега с переменным показателем; операторы свертки; условие Дини – Липшица.

Keywords: Lebesgue spaces with variable exponent; convolution operators; Dini - Lipschitz condition.

1. Введение

Пусть $x=(x_1,\dots,x_n)$, p=p(x) — измеримая существенно ограниченная функция, заданная на R^n , 2π —периодическая по каждой из переменных x_k $(1 \le k \le n)$ и такая, что $p(x) \ge 1$ для всех $x \in R^n$.

Через $L_{2\pi}^{p(x)}$ обозначим пространство измеримых 2π -периодических по каждой переменной функций f=f(x) таких, что

$$\int_{T^n} |f(x)|^{p(x)} dx < \infty,$$

где $T^n=[-\pi,\pi)^n$. Пространство $L^{p(x)}_{2\pi}$ нормируемо и одну из эквивалентных норм можно определить ([1]), полагая для $f\in L^{p(x)}_{2\pi}$

$$\| f \|_{p(\cdot)} = \inf \{ \alpha > 0 : \int_{\mathbb{T}^n} \left| \frac{f(x)}{\alpha} \right|^{p(x)} dx \le 1 \}.$$
 (1)

Ниже нам понадобится множество параметров λ вида $K=I+\bigcup_{\eta\geq 0}\eta S$, где S —

компактное подмножество из $(0,\infty)^n$, $I=(1,1,\ldots,1)\in R^n$. Тогда для K найдутся константы m_i^j и M_i^j $(i,j=1,\ldots,n,i\neq j)$, зависящие только от K и такие, что для любого вектора $\lambda=(\lambda_1,\ldots,\lambda_n)\in K$ имеют место неравенства $m_i^j\lambda_i\leq \lambda_j\leq M_i^j\lambda_i, (i\neq j)$. Пусть для каждого $\lambda\in K$ задана 2π -периодическая по каждой переменной x_k $(1\leq k\leq n)$ и существенно ограниченная функция $k_\lambda=k_\lambda(x)$. Тогда можно определить линейный оператор, действующий в $L^{p(x)}_{>x}$:

$$\mathbf{K}_{\lambda} f = (\mathbf{K}_{\lambda} f)(x) = \int_{T^n} f(t) k_{\lambda}(t - x) dt. \tag{2}$$

В настоящей статье рассмотрена задача о нахождении достаточных условий на переменный показатель p(x), которые гарантируют равномерную ограниченность по $\lambda \in K$ семейства операторов (2) в пространстве $L_{2\pi}^{p(x)}$. Эта задача, в случае n=1, была решена в работе [2], в которой было показано, что если переменный показатель p(x) удовлетворяет условию Дини – Липшица $|p(x')-p(x'')|\ln\frac{1}{|x'-x''|}=O(1)$,

то для равномерной ограниченности в $L_{2\pi}^{p(x)}$ семейства операторов (2) достаточно выполнения следующих условий: $\int_{-\pi}^{\pi} |k_{\lambda}(x)| \, dx \leq c_1 \,, \quad \sup_{x} |k_{\lambda}(x)| \leq c_2 \lambda^y \,, \quad |k_{\lambda}(x)| \leq c_3 \, \text{при} \, \lambda^{-y} \leq |x| \leq \pi, \quad \text{где} \, v, \gamma, c_j > 0 \quad \text{и не зависят от } \lambda \,. \quad \text{Схожая задача рассмотрена в работе}$ [3], где доказывается равномерная ограниченность операторов свертки вида $K_{\varepsilon}f = \int_{\Omega} K_{\varepsilon}(x-y)f(y)dy \,, \quad K_{\varepsilon}(x) = \frac{1}{\varepsilon^n} K(\frac{x}{\varepsilon}) \,, \quad \text{где} \quad K_{\varepsilon}(x) \, - \, \text{измеримая функция с носителем}$ из шара $B_R = B(0,R) \,, \quad \text{в пространствах } L^{p(x)}(\Omega) \,\, (\Omega \subseteq R^n - \, \text{ограниченная область в } \, R^n \,.$

В настоящей статье результат из [2] переносится на многомерный случай.

\S 2. Условия равномерной ограниченности в $L^{p(x)}_{2\pi}$ семейств интегральных операторов свертки

Всюду ниже мы будем считать, что $k_{\lambda}=k_{\lambda}(x)$ – измеримая 2π –периодическая функция. Пусть $\|\lambda\|=\sqrt{\lambda_1^2+\dots+\lambda_n^2}$. Будем говорить, что семейство ядер $\{k_{\lambda}\}_{\lambda\in K}$ удовлетворяет условиям A), B), C), если имеют место следующие оценки:

$$A) \int_{\mathbb{R}^n} |k_{\lambda}(x)| dx \le c_1 '$$

$$B$$
) sup $|k_{\lambda}(x)| \le c_2 \|\lambda\|^{\nu}$,

$$C$$
) | $k_{\lambda}(x)$ | $\leq c_3$ при $x \in T^n \setminus \prod_{i=1}^n [-\lambda_i^{-\gamma}, \lambda_i^{-\gamma}],$

где $\nu, \gamma, c_i > 0$ и не зависят от λ .

Основным результатом настоящей работы является следующая

Теорема 1. Пусть $k_{\lambda}=k_{\lambda}(x)$ ($\lambda\in K$) удовлетворяет условиям A)-C). Тогда, если $p=p(x)-2\pi$ — периодическая функция по каждой переменной, для которой выполнено условие Дини — Липшица

$$|p(x') - p(x'')| \ln \frac{1}{\|x' - x''\|} = O(1), \quad x', x'' \in T^n,$$
 (3)

то семейство операторов $\{\mathsf{K}_{\lambda}\}_{\lambda \in K}$ равномерно ограничено в $L^{p(x)}_{2\pi}.$

Доказательство. Пусть $N_i = [\lambda_i^{-\gamma}]$ — целая часть $\lambda_i^{-\gamma}$, $h_i = \frac{1}{N_i}$, $x = (x_1, \dots, x_n) \in R^n$,

 $t = (t_1, ..., t_n)$, $k_i = 0, \pm 1, ...$, где i = 1, ..., n,

$$(x_{k_1}, \dots, x_{k_n}) = ((k_1 h_1 - 1)\pi, \dots, (k_n h_n - 1)\pi), \tag{4}$$

$$s_{k_1, \dots, k_n} = \min\{p(x) \mid x_{k_i - 1} \le x_i \le x_{k_i + 2}\},\tag{5}$$

$$p_t(x) = s_{k_1, \dots, k_n} \quad (x_{k_i} - t_i \le x_i < x_{k_i + 1} - t_i). \tag{6}$$

Поскольку $p_t(x) = p_{\theta}(x+t)$ (θ — нулевой элемент R^n), то из (4) — (6) следует, что

$$p_t(x) \le p(x) \quad (|t_i| \le \pi h_i, 1 \le i \le n). \tag{7}$$

Через \prod обозначим прямоугольную окрестность точки x:

$$\prod_{x} = \prod_{i=1}^{n} (x_i - \pi h_i, x_i + \pi h_i).$$

Множество индексов $\{1,...,n\}$ разобьем на 3 подмножества:

$$J_1 = \{ j : (x_i - \pi h_i, x_i + \pi h_i) \subset (-\pi, \pi) \},$$

$$J_2 = \{j : x_i - \pi h_i < -\pi\},$$

$$J_3 = \{ j : x_i + \pi h_i > \pi \}$$

и определим для $x \in T^n$ множество $E_{\mathbf{x}}$ следующим образом:

$$E_x = T^n \setminus \left(\prod_{j \in J_1} (x_j - \pi h_j, x_j + \pi h_j) \times \left((x_j - \pi h_j + 2\pi \pi) \right) \right)$$

$$\prod_{j \in J_2} \{ (-\pi, x_j + \pi h_j) \cup (x_j - \pi h_j + 2\pi, \pi) \} \times$$

$$\prod_{j \in J_3} \{ (x_j - \pi h_j, \pi) \cup (-\pi, x_j + \pi h_j - 2\pi) \}$$

Пусть

$$||f||_{p(\cdot)} \le 1.$$
 (8)

Тогда, полагая

$$\overline{p} = \max\{p(x) \mid x \in T^n\},\$$

имеем

$$\left(\int_{T^n} \left| (\mathsf{K}_{\lambda} f)(x) \right|^{p(x)} dx \right)^{\frac{1}{p}} = \left(\int_{T^n} \left| \int_{\Pi_x} + \int_{E_x} f(t) k_{\lambda}(t-x) dt \right|^{p(x)} dx \right)^{\frac{1}{p}} \le \mathsf{I}_{1}^{\frac{1}{p}} + \mathsf{I}_{2}^{\frac{1}{p}}. \tag{9}$$

Здесь мы воспользовались тем, что отображение [4, с. 11] $(f,g)=\rho(f,g)=\int_{T^n}|f(x)-g(x)|^{p(x)}\,dx\Big|_p^{\frac{1}{p}}$ является метрикой в $L_{2\pi}^{p(x)}$. Заметим, что в силу свойства C) имеем $|k_\lambda(t-x)|=O(1)$ при $x\in T^n$, $t\in E_x$. Поэтому с учетом (8) находим

$$\left| \int_{E_{x}} f(t)k_{\lambda}(t-x)dt \right| = O(1) \int_{E_{x}} |f(t)| dt = O(1) \int_{T^{n}} |f(t)| dt =$$

$$= O(1) \|f\|_{P(\cdot)} = O(1), \tag{10}$$

так как при $q(x) \le p(x)$ имеет место оценка

$$||f||_{q(\cdot)} \le (2\pi + 1) ||f||_{p(\cdot)}.$$
 (11)

Из (9) и (10) следует, что

$$I_2 = O(1).$$
 (12)

Пусть $\Delta_{k_i} = (x_{k_i}, x_{k_i+1})$, $\Delta_{k_1, \dots, k_n} = \prod_{i=1}^n \Delta_{k_i}$. Оценим \mathbf{I}_1 . Имеем

$$I_{1} = \sum_{k_{1}=0}^{2N_{1}-1} \cdots \sum_{k_{n}=0}^{2N_{n}-1} \int_{\Delta_{k_{1},\dots,k_{n}}} \left| \int_{\Pi_{x}} f(t)k_{\lambda}(t-x)dt \right|^{p(x)} dx =$$

$$\sum_{k_1=0}^{2N_1-1} \cdots \sum_{k_n=0}^{2N_n-1} \int_{\Delta_{k_1,\dots,k_n}} \left| \int_{\Pi_x} f(t) k_{\lambda}(t-x) dt \right|^{p(x)-s_{k_1},\dots,k_n} dx.$$
 (13)

Из того, что $\lambda \in K$, следует

$$m_1^j \lambda_1 \le \lambda_j \le M_1^j \lambda_1 (2 \le j \le n). \tag{14}$$

Из условия (3) и из (4) , (5) и (14) при $x \in \Delta_{k_1,\dots,k_n}$ получаем

$$|p(x) - s_k| = O((\ln(2 \|\lambda\|^{\gamma}))^{-1}) = O\left(\frac{1}{\ln 2\sqrt{\lambda_1^2 + \ldots + \lambda_n^2}}\right) =$$

$$O \ \frac{1}{\ln \ 2\lambda_1 \sqrt{1 + (m_1^2)^2 + \ldots + (m_1^n)^2}} \ = O(\frac{1}{\ln \ 2\lambda_1})$$

Поэтому в силу B), (8) и (14) имеем

$$\left| \int_{\Pi_{x}} f(t)k_{\lambda}(t-x)dt \right|^{p(x)-s_{k_{1},...,k_{n}}} =$$

$$(\lambda_{1}^{v})^{O(\frac{1}{\ln(2\lambda_{1})})} \left(\int_{\Pi_{x}} |f(t)| dt \right)^{O(\frac{1}{\ln(2\lambda_{1})})} =$$

$$O(1) \left(||f||_{p(\cdot)} \right)^{O(\frac{1}{\ln(2\lambda_{1})})} = O(1).$$
(15)

Положим

$$\mu = \mu(\lambda) = \int_{\Pi_x} |k_{\lambda}(t - x)| dt = \int_{[-\pi h_t, -\pi h_t]^n} |k_{\lambda}(t)| dt$$
 (16)

и заметим, что в силу свойства A) имеем $\mu(\lambda)=O(1)$. Мы можем считать, что для любого λ будет $\mu(\lambda)>0$. Из (13), (15) и (16) с помощью неравенства Йенсена находим

$$I_{1} = O(1) \sum_{k_{1}=0}^{2N_{1}-1} \cdots \sum_{k_{n}=0}^{2N_{n}-1} \mu^{s_{k_{1}}, \dots, s_{n}} \int_{\Delta_{k_{1}, \dots, k_{n}}} \left(\frac{1}{\mu} \int_{\Pi_{x}} |f(t)| \cdot |k_{\lambda}(t-x)| dt \right)^{s_{k_{1}}, \dots, s_{n}} dx = \\
O(1) \sum_{k_{1}=0}^{2N_{1}-1} \cdots \sum_{k_{n}=0}^{2N_{n}-1} \mu^{s_{k_{1}}, \dots, s_{n}} \int_{\Delta_{k_{1}, \dots, k_{n}}} \frac{dx}{\mu} \int_{\Pi_{x}} |f(t)|^{s_{k_{1}}, \dots, s_{n}} |k_{\lambda}(t-x)| dt = \\
O(1) \sum_{k_{1}=0}^{2N_{1}-1} \cdots \sum_{k_{n}=0}^{2N_{n}-1} \mu^{s_{k_{1}}, \dots, s_{n}} \int_{[-\pi h_{i}, -\pi h_{i}]^{n}} |k_{\lambda}(t)| dt \int_{\Delta_{k_{1}, \dots, k_{n}}} |f(t+x)|^{s_{k_{1}}, \dots, s_{n}} dx = \\
O(1) \int_{[-\pi h_{i}, -\pi h_{i}]^{n}} |k_{\lambda}(t)| dt \sum_{k_{1}=0}^{2N_{1}-1} \cdots \sum_{k_{n}=0}^{2N_{n}-1} \int_{\Delta_{k_{1}, \dots, k_{n}}} |f(t+x)|^{s_{k_{1}}, \dots, s_{n}} dx = \\
O(1) \int_{[-\pi h_{i}, -\pi h_{i}]^{n}} |k_{\lambda}(t)| dt \sum_{k_{1}=0}^{2N_{1}-1} \cdots \sum_{k_{n}=0}^{2N_{n}-1} \int_{\Delta_{k_{1}, \dots, k_{n}}} |f(x)|^{s_{k_{1}}, \dots, s_{n}} dx,$$

где
$$\Delta_{k_1,\dots k_n,t} = \prod_{i=1}^n (x_{k_i} - t_i, x_{k_i+1} - t_i)$$
 .

Воспользовавшись равенствами (4) - (6), находим

$$I_{1} = O(1) \int_{[-\pi h_{i}, -\pi h_{i}]^{n}} |k_{\lambda}(t)| dt \sum_{k_{1}=0}^{2N_{1}-1} \cdots \sum_{k_{n}=0}^{2N_{n}-1} \int_{\Delta_{k_{1}, \dots, k_{n}, t}} |f(x)|^{p_{t}(x)} dx =$$

$$= O(1) \int_{[-\pi h_{i}, -\pi h_{i}]^{n}} |k_{\lambda}(t)| dt \int_{[-\pi h_{i}, -\pi h_{i}]^{n}} |f(x)|^{p_{t}(x)} dx =$$

$$\prod_{i=1}^{n} (\pi - t_{i}, \pi + t_{i})$$

$$= O(1) \int_{[-\pi h_t, -\pi h_t]^n} |k_{\lambda}(t)| dt \int_{T^n} |f(x)|^{p_t(x)} dx.$$
 (17)

Далее, в силу (7), (8) и (11)

$$\int_{T^{n}} |f(x)|^{p_{t}(x)} dx = \int_{T^{n}} \left| \frac{f(x)}{\|f\|_{p_{t}(\cdot)}} \right|^{p_{t}(x)} \left(\|f\|_{p_{t}(\cdot)} \right)^{p_{t}(x)} dx \le$$

$$\leq \int_{T^{n}} \left| \frac{f(x)}{\|f\|_{p_{t}(\cdot)}} \right|^{p_{t}(x)} \left((2\pi + 1) \|f\|_{p(\cdot)} \right)^{p_{t}(x)} dx \le$$

$$(2\pi + 1)^{\frac{n}{p}} \int_{T^{n}} \left| \frac{f(x)}{\|f\|_{p_{t}(\cdot)}} \right|^{p_{t}(x)} dx = (2\pi + 1)^{\frac{n}{p}}. \tag{18}$$

Из A) , (17) и (18) выводим

$$I_1 = O(1). \tag{19}$$

Сопоставляя оценки (9), (12), (19), установленные при условии (8), мы заключаем, что семейство линейных операторов $\{K_{\lambda}\}_{\lambda \in K}$ равномерно ограничено на единичном шаре пространства $L_{2\pi}^{p(x)}$. Теорема 1 доказана.

В качестве следствий теоремы 1 приведем примеры семейств операторов с некоторыми классическими ядрами, равномерно ограниченных в пространстве $L^{p(x)}_{2\pi}$.

Операторы Фейера. Для каждого натурального m и $x \in R^1$ положим

$$\Phi_m(x) = \frac{2}{m+1} \left\{ \frac{\sin\left[(m+1)\frac{x}{2}\right]}{2\sin\frac{x}{2}} \right\}^2$$

Пусть теперь $x=(x_1,...,x_n)$ и $\lambda=(\lambda_1,...,\lambda_n)$. Многомерный аналог ядра Фейера имеет вид

$$K_{\lambda}(x) = \prod_{k=1}^{n} \Phi_{m_k}(x),$$

где $m_k \leq \lambda_k < m_k + 1$. Нетрудно проверить, что семейство ядер $\left\{K_{\lambda}(x)\right\}_{\lambda \in K}$ удовлетворяет условиям A)-C) и, следовательно, в силу теоремы 1 семейство операторов Фейера

$$F_{\lambda}f = (F_{\lambda}f)(x) = \frac{1}{\pi^n} \int_{T^n} f(t)K_{\lambda}(t-x)dt$$

равномерно ограничено в $L^{p(x)}_{2\pi}$ относительно $\lambda \in K$.

Операторы Стеклова. Для каждого $\lambda \in K$ положим

$$\Delta_{\lambda} = \prod_{k=1}^{n} \left[-\frac{1}{2\lambda_{k}}, \frac{1}{2\lambda_{k}} \right], \quad K_{\lambda}(x) = \begin{cases} \prod_{k=1}^{n} \lambda_{k}, x \in \Delta_{\lambda}, \\ 0, x \in T^{n} \setminus \Delta_{\lambda}, \end{cases}$$

и продолжим $K_{\scriptscriptstyle \lambda}({\scriptscriptstyle X})$ $2\pi-$ периодически на ${\scriptscriptstyle R}^{\scriptscriptstyle n}$. Операторы Стеклова $S_{\scriptscriptstyle \lambda}$ определяются равенством

$$S_{\lambda}f = (S_{\lambda}(f))(x) = \int_{\mathbb{R}^n} f(t+x)K_{\lambda}(t)dt.$$

Не составляет труда проверить, что ядра Стеклова удовлетворяют условиям A)-C) и поэтому из теоремы 1 следует, что семейство $\left\{S_{\lambda}(f)\right\}_{\lambda \in K}$ равномерно ограничено в $L^{p(x)}_{\gamma_x}$.

ЛИТЕРАТУРА

1. Шарапудинов И.И. О топологии пространства $L^{p(t)}[0,1]$ // Матем. заметки. 1979. Т. 26, № 4. С. 613-632.

- 2. Шарапудинов И.И. О равномерной ограниченности в пространстве $L^p(p=p(x))$ некоторых семейств операторов свертки // Матем. заметки. 1996. Т. 59, N 2. С. 291-302.
- 3. Samko S.G. Denseness of $C_0^\infty(R^n)$ in generalized Sobolev Spaces $W^{m,p(x)}(R^n)//$ Intern. Soc. for Analysis, Applic. and Comput. 2000. Vol. 5. Direct and Inverse Problems of Math. Physics / ed. by R.Gilbert, J. Kajiwara and Yongzhi S. Xu. Kluwer Acad. Publ. P. 333-342.
- 4. Шарапудинов И.И. Некоторые вопросы теории приближений в пространствах Лебега с переменным показателем / отв. ред. А.Г. Кусраев. Владикавказ: ЮМИ ВНЦ РАН и РСО-А, 2012. 267 с. (Итоги науки. Юг России. Математическая монография. Вып. 5).

Поступила в редакцию 10.09.2013 г. Принята к печати 18.12.2013 г.